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Abstract

Even under polynomial restrictions on plan length, confor-
mant planning remains a very hard computational problem as
plan verification itself can take exponential time. This heavy
price cannot be avoided in general although in many cases
conformant plans are verifiable efficiently by means of sim-
ple forms of disjunctive inference. This raises the question
of whether it is possible to identify and use such forms of
inference for developing an efficient but incomplete planner
capable of solving non-trivial problems quickly. In this work,
we show that this is possible by mapping conformant into
classical problems that are then solved by an off-the-shelf
classical planner. The formulation is sound as the classical
plans obtained are all conformant, but it is incomplete as the
inverse relation does not always hold. The translation accom-
modates ‘reasoning by cases’ by means of an ‘split-protect-
and-merge’ strategy; namely, atoms L/Xi that represent con-
ditional beliefs ‘if Xi then L’ are introduced in the classical
encoding, that are combined by suitable actions to yield the
literal L when the disjunction X1 ∨ · · · ∨Xn holds and cer-
tain invariants in the plan are verified. Empirical results over a
wide variety of problems illustrate the power of the approach.

Introduction
Conformant planning is a form of planning where a goal is
to be achieved when the initial situation is not fully known
and actions may have non-deterministic effects (Goldman &
Boddy 1996; Smith & Weld 1998). Conformant planning is
computationally harder than classical planning, as even un-
der polynomial restrictions on plan length, plan verification
remains hard (Haslum & Jonsson 1999; Baral, Kreinovich,
& Trejo 2000; Turner 2002; Rintanten 2004). This addi-
tional complexity cannot be avoided in general, although of-
ten conformant plan verification can be done efficiently by
means of simple forms of disjunctive inference.

For example, simple rules suffice to show that a robot that
systematically scans a grid, collecting the objects in each of
the cells, will pick up all the objects in the grid, regardless
of their original locations. Or similarly, that a robot that
moves n times to the right in an empty grid of size n, will
necessarily end up in the rightmost column.
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This raises the question of whether it is possible to iden-
tify and use such forms of inference for developing an ef-
ficient but incomplete conformant planner capable of solv-
ing non-trivial problems quickly. In this work, we show
that this is possible by formulating a suitable translation of
conformant problems into classical problems which are then
solved by an off-the-shelf classical planner. The translation
is sound as the classical plans are all conformant, but it is
incomplete as the converse relation does not always hold.
The translation scheme accommodates ‘reasoning by cases’
by means of a ‘split-protect-and-merge’ strategy; namely,
atoms L/Xi that represent conditional beliefs ‘if Xi then L’
are introduced in the classical encoding that are then com-
bined by suitable actions to yield the literal L when the dis-
junction X1 ∨ · · · ∨ Xn holds and certain invariants in the
plan are verified.

By accounting for this type of simple disjunctive rea-
soning in a translation scheme that has a clear semantics,
we will see that many other patterns of inference fall into
place. For example, if in the robot domain above ‘push’ ac-
tions that move objects from one cell to the next are added
(for each one of the possible directions), and at the same
time, the pick up actions are restricted to particular cells
(like corners or centers), then the classical encoding would
produce valid conformant plans where enough pushes are
done so that all objects are forced into such cells regard-
less of their original location, from which they can be col-
lected. While several effective but incomplete formulations
of conformant planning have been formulated before (some
of which handle sensing as well; see (Baral & Son 1997;
Petrick & Bacchus 2002)), none, as far as we know, can rep-
resent these types of plans.

In this paper, we will look first at some proposals that
tradeoff expressivity for efficiency, present then the pro-
posed translation scheme, look at some empirical results,
and discuss the current limitations.

Taming Complexity
The problem of conformant planning can be formulated as
a deterministic search problem in belief space, where a se-
quence of actions that map a given initial belief state bel0
into a target set of beliefs is sought. A belief state bel rep-
resents the set of states s that are deemed possible, and ac-
tions a, whether deterministic or not, deterministically map



one belief state bel into another, denoted as bela (Bonet &
Geffner 2000). Since the number of belief states is expo-
nential in the number of states, it is clear that the search for
conformant plans takes place in a space that is exponentially
larger than the search for classical plans. Indeed, while un-
der polynomial length restrictions, classical plan existence is
NP-Complete (Bylander 1994), under the same conditions
conformant plan existence is harder, at least ΣP

2 (Turner
2002). This is because plan verification is ‘easy’ in the clas-
sical setting but ‘hard’ in the conformant one, as the verifi-
cation requires to evaluate the plan for every possible initial
state and transition.

A way to trade off completeness for efficiency in confor-
mant planning results from approximating belief states or
transitions. For example, the 0-approximation introduced in
(Baral & Son 1997) represents belief states bel by means of
two sets: the set of literals that are true in bel, and the set of
literals that are false in bel. Variables which do not appear
in either set are unknown. In this representation, checking
whether an action a is applicable in bel, computing the next
belief state bela, and verifying polynomial length plans are
all polynomial time operations. Roughly, a fluent literal L
makes it into bela iff a) action a has some conditional effect
C → L such that all literals in C are in bel, or b) L is in
bel and for all conditional effects C ′ → ¬L of action a, the
complement of some literal L′ ∈ C ′ is in bel.

Conformant planning under the 0-approximation is thus
no more complex, theoretically, than classical planning. The
problem however is that the 0-approximation is strongly in-
complete, as it does not capture any non-trivial form of dis-
junctive inference. For example, given a disjunction p ∨ q
and an action a that maps either p or q into r, the seman-
tics will not validate a as a conformant plan for r. Indeed,
disjunctions that are not tautologies are thrown away. The
0-semantics does capture, on the other hand, situations in
which the information that is missing is not relevant. For
example, if there are actions that can make a variable p true
or false, then uncertainty in the initial state of p would not
hurt. Classical planners, on the other hand, cannot handle
such situations.

Another sound but incomplete approach to planning with
incomplete information is advanced in (Petrick & Bacchus
2002) where belief states bel are represented by more com-
plex formulas which may include disjunctions. Yet in order
to make belief updates efficient several approximations are
introduced, and in particular, while existing disjunctions can
be carried from one belief state to the next and can be sim-
plified, no new disjunctions are added. This too imposes a
serious limitation in the type of problems that can be han-
dled.

Expressivity, however, is not the only problem; efficiency
or control is the other. Indeed, it is not enough to introduce
restrictions that under polynomial length constraints bring
the complexity of conformant planning to that of classical
planning or SAT; the control knowledge needed for solv-
ing the resulting problem must be made available as well.
The approach in (Petrick & Bacchus 2002) leave this prob-
lem largely unaddressed relying on a blind search over com-
pact belief representations and efficient update rules. Recent

elaborations of the 0-approximation in (Son, Tu, & M. Gel-
fond 2005) rely in turn on a fixed heuristic function that
counts the number of goals achieved, which applies well to
some problems but not to others. In this work, we aim to
address both problems, expressivity and control, by account-
ing for certain forms of disjunctive reasoning in a translation
scheme that maps conformant problems into classical prob-
lems that can then be handled efficiently by an off-the-shelf
classical planner.

Basic Translation
The proposed translation maps a conformant planning prob-
lems P into a classical planning problems K(P ) and is de-
scribed in three parts, starting with the basic core K0(P ).

We assume that P is given by a tuple of the form P =
〈F,O, I, G〉 where F stands for the fluent symbols in the
problem, O stands for a set of actions a, I is a set of clauses
over F defining the initial situation, and G is a set of literals
over F defining the goal. In addition, every action a has a
precondition given by a set of fluent literals, and a set of con-
ditional effects C → L where C is a set of fluent literals and
L is a literal. We assume that actions are all deterministic
and hence that all uncertainty lies in the initial situation.

We will usually refer to the conditional effects C → L
of an action a as the rules associated with a, and sometimes
write them as a : C → L. Also, we use the expression
C ∧ X → L to refer to rules with literal X in their bodies.
In both cases, C may be empty. Last, when L is a literal, we
take ¬L to denote the complement of L.

Definition 1 (Core Translation) The core translation maps
the conformant problem P into the classical problem
K0(P ) = 〈F ′, O′, I ′, G′〉 where

• F ′ = {KL, K¬L | L ∈ F}
• I ′ = {KL,¬K¬L | L ∈ I}∪ {¬KL′,¬K¬L′ | L′ 6∈ I}
• G′ = {KL | L ∈ G}
• O′ = O but with each literal precondition L for a ∈ O

replaced by KL, and each conditional effect a : C → L
replaced by a : KC → KL and a : ¬K¬C → ¬K¬L.

For any literal L in P , KL denotes its ‘epistemic’ coun-
terpart in K0(P ) whose meaning is that L is known. We
write KC for C = L1 ∧ L2 . . . as an abbreviation for
KL1 ∧ KL2 . . ., and ¬K¬C for ¬K¬L1 ∧ ¬K¬L2 . . ..1
L ∈ I (L 6∈ I) means that literal L is (not) a unit clause in
I .

The intuition behind the translation is simple: first, com-
plementary literals L and ¬L whose status is not known in
the initial situation in P are ‘negated’, by mapping them into
the negated K-literals ¬KL and ¬K¬L that are jointly con-
sistent and can only appear in the body of conditions leading
to other negated K-literals only. This mapping removes all
uncertainty from K0(P ). In addition, to ensure soundness,
each conditional effect a : C → L in P maps, not only

1Taking ¬K¬C as an abbreviation for ¬K¬L1 ∧ ¬K¬L2

when C = L1 ∧ L2 means that we take C to be known as false
only when one of the literals in C is known to be false. In modal
logics, this is correct but not required; C may be known to be false
even when no literal in C is; see (Fagin et al. 1995).



into the ‘supporting’ rule a : KC → KL but also into the
‘cancellation’ rule a : ¬K¬C → ¬K¬L that guarantees
that literal K¬L is deleted (prevented to persist) when ac-
tion a is applied except when C is known to be false. The
soundness of the translation can be then expressed as:
Theorem 2 (Soundness K0(P )) If π is a plan that solves
the classical planning problem K0(P ), then π is a plan that
solves the conformant planning problem P .
This can be proved through the following lemma that for-
mally captures the meaning of K-literals:
Lemma 3 (Meaning K-literals) If π is a plan that yields
the literal KL in K0(P ), then π is a plan that yields the
literal L with certainty in P .
A plan π here is an applicable action sequence, and π yields
a formula if the formula is necessarily true upon completion
of the plan. The reader can verify that this translation is
in agreement with the 0-approximation semantics (Baral &
Son 1997):
Theorem 4 (Equivalence K0(P ) and 0-Approximation)
π solves the classical planning problem K0(P ) iff it solves
the conformant planning problem P according to the
0-Approximation.
This correspondence is not surprising as both formulations
throw away the disjunctive information and restrict the valid
plans to those that render the missing information irrele-
vant. Also, the states sk

0 , sk
1 , . . . generated by the action

sequence π = a0, a1, . . . over the classical encoding K0(P )
encode precisely the literals that are known according to the
0-approximation; namely, L is known at time t according to
the 0-approximation iff the literal KL is true in sk

t .

As an illustration, given a conformant problem P with
I = {p, r} (i.e., nothing else is known; there is no CWA),
and actions a and b with effects a : p → q, a : r → ¬s,
and b : q → s, the plan {a, b} is valid for achieving q and
s according to both K0(P ) and the 0-approximation, while
the singleton sequence {a} is not valid according to either.
At the same time, if the initial situation is changed to I =
{p ∨ q}, neither approach would sanction that plan {a} for
q, even if it is a valid conformant plan. For this, some ability
to reason with disjunctions is needed.

Case Analysis over Single Actions
We will make the formulation stronger by accounting for
certain disjunctive inferences in the translation. This will re-
sult into more actions and conditional effects added to K(P )
which is initially set to K0(P ).

Consider an action a that in a given context C ′ can force
a literal L to make the transition from false to true, while
preventing the opposite transition. In such a context C ′, even
if L is unknown, a can be used to make L true. This type of
inference is captured in the translation as follows:
Rule 2 (Action Compilation) If P contains a rule a : C ∧
¬L → L, and the rules for the same action a with ¬L in the
head are Ci → ¬L, i = 1, . . . , n for n ≥ 0, then add to
K(P ) the rules KC ∧K¬L1 ∧ · · · ∧K¬Ln → KL where
Li is a literal in Ci.

This is a modular translation rule in which the context C ′

above is the formula C∧¬L1∧· · ·∧¬Ln, for any combina-
tion of literals Li chosen as to preempt the rules Ci → ¬L
associated with the same action a that can clobber L. All
the literals in C ′ are preceded by K’s as they refer to literals
in K(P ) that ensure that the condition holds with certainty.
This translation remains polynomial as long as the number
of rules a : Ci → L associated with the same action a and
the number of literals in the conditions Ci remain bounded,
which is normally the case (in the existing benchmarks both
numbers are pretty small, one or two at most).

It is not difficult to show that this translation rule pre-
serves soundness. A key characteristic of the rule and others
to be introduced below is that they make use of the condi-
tional effects a : C ∧X → L in the problem P for deriving
L with certainty when the body of the rule C∧X is not fully
known.

In an example like ‘empty room’, where a robot moves
in an empty square grid and literals Xi are used to represent
the column location of the robot, this translation ensures that
literal K¬X1 is obtained right after a single ‘move right’ ac-
tion (namely, that the robot cannot be in the leftmost column
then), and similarly, that K¬X2 is obtained after two con-
secutive right moves, etc. If the grid is nxn, the resulting
classical theory yields K¬Xi for all i < n after n− 1 steps,
although it does not yield KXn (being in the rightmost col-
umn). For this, the disjunction expressing the possible col-
umn positions, namely X1∨X2∨· · ·∨Xn, needs to be taken
into account as well. We address this next.

Case Analysis over Action Sequences
We extend the translation further so that the disjunctions in
P are taken into account in a form that is similar to the Dis-
junction Elimination inference rule used in Logic (Barwise
& Etchemendy 1991):

If X1 ∨ · · · ∨Xn, X1 ⊃ L, . . . , and Xn ⊃ L then L (1)

For this, we create new atoms in K(P ), written L/Xi, that
aim to capture the conditional beliefs Xi ⊃ L. Then, the re-
sulting classical encoding will be such that when these atoms
are ‘achieved’ for each i = 1, . . . , n, and they are suitably
‘protected’, the literal L will be rendered ‘achievable’ by
means of an extra ‘dummy’ action with conditional effect
similar to (1).

As already mentioned, the atoms L/Xi will stand for the
conditional belief ‘if Xi then L’. In principle, any rule a :
C ∧Xi → L in P with Xi uncertain can be used to produce
a rule a : KC → L/Xi in K(P ), meaning that if KC is
known and a is applied, then if Xi was true, L will become
true. However, we want L/Xi to mean exactly that ‘right
after the action a, if Xi is true, then L is true’, and for this,
some additional care is needed. Indeed, if a contains also
rules a : Ck → Xi that can make Xi true, it may be possible
that L and Xi are false at time t when a is applied, and that
L remains false but Xi becomes true, and then that ‘if Xi

at t, then L at t + 1’ is true, but ‘if Xi at t + 1, then L at
t + 1’ is false. In order to rule out this situation we define
the corresponding translation rule as follows:



Rule 3 (Split) For each rule a : C∧Xi → L in P where Xi

is a literal that appears in a disjunction X : X1∨X2∨· · ·∨
Xn, if a : Ck → Xi, k = 1, . . . ,m for m ≥ 0 are the rules
in P for the same action a with Xi in the head, then add to
K(P ) the atoms L/Xj , j = 1, . . . , n, all initialized to false,
and the rules a : KC∧K¬L1∧· · ·∧K¬Lm → L/Xi where
Lk is a literal in Ck.

The combination of the conditional beliefs represented by
the atoms L/Xi is achieved by means of extra actions added
to the classical encoding K(P ) that generalize (1) slightly,
allowing some of the cases Xi to be disproved:2

Rule 4 (Merge) For each disjunction X : X1 ∨ · · ·Xn and
atom L in P such that L/Xi is an atom in K(P ), add to
K(P ) a new action aX,L with conditional effect

(L/X1∨K¬X1)∧· · ·∧(L/Xn∨K¬Xn)∧FLAGX,L → KL

where FLAGX,L is a boolean initialized to true. If L = Xi

for some i ∈ [1, n], remove the conjunct (L/Xi ∨ K¬Xi)
from the rule body.

A key distinction from Logic is that the disjunction X1 ∨
· · · ∨ Xn and the conditional beliefs ‘if Xi then L’ repre-
sented by the atoms L/Xi need all be preserved until they
are combined together to yield L. This is the purpose of the
boolean FLAGX,L that is initially set to true, but which is
deleted when an action is done in a context where it is not
possible to prove that 1) L is preserved (if true), 2) the dis-
junction X ∨ L is preserved (the disjunction X is initially
true but it is actually sufficient to preserve the weaker dis-
junction X ∨ L), and 3) the conditional beliefs represented
by the atoms L/Xi achieved are preserved. This is accom-
plished by extending K(P ) with the following cancellation
rules:

Rule 5 (Protect) If there is a boolean flag FLAGX,L in
K(P ) for X : X1 ∨ · · · ∨ Xn, then for each action a:
1) if a : C → ¬L in P , add to K(P ) the rule a :
¬K¬C → ¬FLAGX,L, 2) if a : C → ¬Xi in P and
neither a : C → Xk nor a : C → L in P for Xi and Xk in
X , add to K(P ) the rule a : ¬K¬C → ¬FLAGX,L, and
3) if a : C → Xk for Xk in X , then add to K(P ) the rule
a : ¬K¬C ∧ L/Xk → ¬FLAGX,L.

These rules, as we will see, yield expressivity without sac-
rificing efficiency, as they manage to accommodate non-
trivial forms of disjunctive inference in a classical theory
without having to carry disjunctive information explicitly
in the belief state: disjunctive information is represented
implicitly in K(P ) in terms of the the conditional atoms
L/Xi, the ’merge’ actions, and the invariants enforced by
the ’flags’.

Theorem 5 (Soundness K(P )) Any plan that achieves the
literal KL in K(P ) is a plan that achieves L in the confor-
mant problem P .3

2When using the classical plans obtained from K(P ) as con-
formant plans for P , such ‘dummy’ actions must be removed.

3For this result to hold, we assume that for every pair of con-
flicting rules a : C → α and a : C′ → ¬α associated with the
same action a in P , the bodies C and C′ are such that they con-

The key element in the proof is the following lemma that
captures the meaning of the L/Xi atoms:

Lemma 6 (L/Xi Atoms) Any plan that yields L/Xi while
preserving FLAGX,L in K(P ) is a plan that achieves the
conditional Xi ⊃ L in P .

A proof sketch goes as follows. Let us assume that L/Xi,
which is initially false, is made true at time t by an action
a in the plan. We need to prove that if FLAGX,L remains
true in K(P ) until time t′ ≥ t, then the conditional Xi ⊃ L
remains true until t′ in P , which we write as Xi(t′) ⊃ L(t′).
From the argument above, if L/Xi became true in K(P ) at
time t, so does the conditional Xi(t) ⊃ L(t) in P . From
this, Xi(t′) ⊃ L(t′) follows if we can show both Xi(t′) ⊃
Xi(t) and L(t) ⊃ L(t′). The latter is true because the rules
in K(P ) ensure that if a rule a′ : C ′ → ¬L gets triggered
by the plan in P , the rule a′ : ¬K¬C ′ → ¬FLAGX,L

will be triggered by the plan in K(P ). Similarly, the former
is true because the rules in K(P ) ensure that if a rule a′ :
C ′ → Xi is triggered by the plan in P when L/Xi is true
in K(P ), then the rule a′ : ¬K¬C ′ ∧ L/Xi → FLAGX,L

will be triggered in K(P ). In either case, FLAGX,L would
be deleted, so if it is not, Xi(t′) ⊃ Xi(t) and L(t) ⊃ L(t′)
must hold, and since Xi(t) ⊃ L(t) holds, so must Xi(t′) ⊃
L(t′).

As an illustration, given an object O to be collected
from an unknown location in a grid with two cells A
and B using the actions pick(X), push(X, Y ), and
go(X, Y ), where X and Y are cells and the three ac-
tions have as a precondition that the agent is at X , it
follows that if the agent is initially at A, the plan π1 =
{pick(A), go(A,B), pick(B)} achieves hold(O) in K(P )
and so does π2 = {push(A,B), go(A,B), pick(B)},
but π3 = {pick(A), go(A,B), push(B,A)} does not.
If at(O,A) ∨ at(O,B) is the disjunction X in P and
L is hold(O), then π1 achieves hold(O)/at(O,A)
and hold(O)/at(O,B), π2 achieves K¬at(O,A)
and hold(B)/at(O,B), while π3 achieves both
hold(O)/at(O,A) and K¬at(O,B) but clobbers
FLAGX,L, preempting the merge action aX,L from
achieving hold(O). This happens because the rule
push(B,A) : at(O,B) → at(O,A) in P yields the rule
push(B,A) : ¬K¬at(O,B)∧L/at(O,A) → ¬FLAGX,L

which gets triggered in K(P ) by the action sequence π3.

Experimental Results
We have implemented the translation scheme into a program
cf2cs that takes a conformant planning problem P as in-
put an outputs a classical problem K(P ). In the experiments
below, this problem is fed into the FF v2.3 classical planner
(Hoffmann & Nebel 2001). We refer to the resulting confor-
mant planner as cf2cs(ff). The experiments were tested
on a Intel/Linux machine running at 2.80GHz with 2Gb.

tain a mutex pair L, L′. This mutex relation is enforced on the
corresponding K-literals by adding to every effect C′′ → KL as-
sociated with the ’dummy’ merge action aX,L in K(P ), the effects
C′′ → K¬L′ and C′′ → ¬KL′.



P K(P )
Problem #Actions #Atoms #Effects Translation time #Actions #Atoms #Effects

Bomb-100-60 6060 320 24120 1.35 6260 1041 79560
Cube-11-Ctr 6 33 120 0.036 72 226 1152
Cube-75-Ctr 6 225 888 1.08 456 1789 8448
Sqr-64-Ctr 4 128 504 0.31 260 893 4796
Sqr-240-Ctr 4 480 1912 6.11 964 3833 18172

Grid-4-5 174 155 444 5.65 183 351 1244
Safe-100 100 101 100 0.11 101 304 804

Logistics-4-10-10 3320 610 6640 3.52 3370 1321 13880

Table 1: Data concerning the translation of some conformant problems P into classical encodings K(P ). The sizes refer to the
grounded versions, and all times are in seconds and they include grounding time.

We report results on two classes of instances: existing
benchmarks and some domains of our own. In both cases,
we compare the results (times and plan lengths) with those
obtained by running Conformant FF, an state-of-the-art con-
formant planner (Brafman & Hoffmann 2004). We could
have used other recent classical and conformant planners
such as (Cimatti, Roveri, & Bertoli 2004) and (Bryce &
Kambhampati 2004), but as a reference, this should do. We
want to show that our approach solves a wide variety of
non-trivial problems without any ‘help’ in the encoding or
control, scaling up like a classical planner. For the existing
benchmarks we use the actual encodings from the Confor-
mant FF repository, the other encodings will be made avail-
able from us. None of these encoding can be solved by either
the basic K0(P ) translation or the 0-approximation.

Table 1 shows data concerning the translation of a num-
ber of problems from various sources, used and explained
in (Brafman & Hoffmann 2004). Bomb-x-y refers to the
Bomb-in-the-toilet problem with x packages, y toilets, and
clogging. Cube-n-Ctr refers to the problem of reaching the
center of a cube of size n3 from a completely unknown lo-
cation. Square-n-Ctr is similar but involves only n2 possi-
ble locations. Logistics-i-j-k, Grid-n and Safe-n are from
(Brafman & Hoffmann 2004).

Table 2 shows the plan times and lengths obtained by
cf2cs(ff) vs. Conformant FF over various benchmarks,
where it can be seen that cf2cs(ff) scales up much bet-
ter, solving problems like Sqr-240-Ctr and Cube-75-Ctr that
are well beyond the reach of current complete or incomplete
conformant planners with the exception of (Cimatti, Roveri,
& Bertoli 2004).

Among the existing benchmarks, not included in the table,
there are three domains, Sorting-Nets, (Incomplete) Blocks,
and Ring, which in their standard encodings, cannot be han-
dled by the proposed translation scheme; namely, in none of
these encodings the planner finds a classical plan in K(P )
even though P has conformant solutions. We will say more
about the incompleteness of the translation below.

Finally, Table 3 shows plan times and lengths for a family
of grid problems that we devised: Retrieve is about pick-
ing up objects whose locations are unknown; Dispose is
about retrieving such objects and placing them in a trash
can at a given, known location; Push is a variation of Re-
trieve when there is also a push action that can move objects;
and Push-To is a further variation where the pick-up actions

cf2cs(ff) CFF
Problem Time Length Time Length
Bomb-50-50 2.13 50 0.2 50
Bomb-100-1 0.84 199 96.2 199
Bomb-100-60 9.64 140 23.53 140
Cube-7-Ctr 0.02 24 38.2 39
Cube-9-Ctr 0.05 33 —- —-
Cube-11-Ctr 0.09 42 —- —-
Cube-75-Ctr 484.0 330 —- —-
Sqr-8-Ctr 0.03 22 140.5 50
Sqr-12-Ctr 0.04 32 —- —-
Sqr-64-Ctr 9.66 188 —- —-
Sqr-120-Ctr 59.4 356 —- —-
Sqr-240-Ctr 858.0 716 —- —-
Grid-4-4 0.06 25 0.11 25
Grid-4-5 0.05 30 0.14 30
Safe-30 0.01 30 6.6 30
Safe-70 0.08 70 561.8 70
Safe-100 0.28 100 —- —-
Logistics-3-10-10 4.42 109 11.15 108
Logistics-4-10-10 5.91 125 11.74 121

Table 2: Plan times and lengths obtained by a classical plan-
ner (FF) over K(P ) translation (cf2cs(ff)) in relation to
Conformant FF. Times in seconds. The symbol ‘—-’ means
cutoff exceeded (30 mins or 800Mb)

are applicable only at certain locations, and therefore, ob-
jects need to be pushed into those locations first. Problem
P-n-m stands for problem P over grid of size n and m ob-
jects. Once again the Table shows a different scaling be-
havior between cf2cs(ff) and Conformant FF. The ex-
ception is the Push-To domain where the resulting classical
encoding K(P ) has many dead-ends that are not detected
by the heuristic used in FF. This an interesting problem that
could be solved in principle by refining the FF heuristic, the
translation, or both. We plan to look further into this.

Discussion
We have introduced a translation scheme that enables a wide
class of conformant problems to be solved by an off-the-
shelf classical planner. The translation accounts for a lim-
ited form of ‘reasoning by cases’ by means of an ‘split-
protect-and-merge’ strategy; namely, atoms L/Xi that rep-
resent conditional beliefs ‘if Xi then L’ are introduced for



cf2cs(ff) CFF
Problem Time Length Time Length
Retrieve-4-1 0.02 41 0.04 33
Retrieve-4-2 0.08 75 0.23 49
Retrieve-4-3 0.17 91 0.8 65
Retrieve-8-1 1.18 220 204.68 210
Retrieve-8-2 3.13 291 —- —-
Retrieve-8-3 132.49 415 —- —-
Retrieve-12-1 —- —- —- —-
Dispose-4-1 0.02 37 0.12 39
Dispose-4-2 0.05 54 0.47 56
Dispose-4-3 0.09 71 1.49 73
Dispose-8-1 1.83 265 361 227
Dispose-8-2 2.87 280 —- —-
Dispose-8-3 6.87 367 —- —-
Dispose-12-1 —- —- —- —-
Push-4-1 0.07 41 0.09 33
Push-4-2 0.24 75 0.41 49
Push-4-3 0.53 91 1.23 65
Push-8-1 3.29 220 —- —-
Push-8-2 12.89 291 —- —-
Push-8-3 —- —- —- —-
Push-to-3-1 0.32 21 0.03 29
Push-to-4-1 —- —- 0.48 46

Table 3: Plan times and lengths obtained by a classical plan-
ner (FF) over K(P ) translation (cf2cs(ff)) in relation to
Conformant FF. Times in seconds. The symbol ‘—-’ means
cutoff exceeded (30 mins or 800Mb).

disjunctions X1∨· · ·∨Xn in the problem, and when certain
invariants are verified in the plan, they are combined to yield
the literal L. Empirical results over a variety of problems il-
lustrate the power of this approach.

The simplicity of the translation and the semantics cap-
tured by the theorems not only enable us to prove the sound-
ness of the approach, but as importantly, to delimit its scope.
In relation to natural deduction systems in the style of Ficht
(Barwise & Etchemendy 1991), the type of disjunctive rea-
soning accounted for in the translation is limited in two
ways. First, while disjunctions X1 ∨ · · · ∨Xn in P are used
to create sub-derivations by making assumptions of the form
Xi, these sub-derivations are not nested, and therefore, dis-
junctions are not combined. This implies, for example, that
four action rules like ai,j : Xi ∧ Yj → L for i = 1, 2 and
j = 1, 2 cannot be used to produce a plan for L given the dis-
junctions X1∨X2 and Y1∨Y2 in the initial situation. Second,
the sub-derivations that arise when making the assumptions
Xi are very limited, and in particular the atoms L/Xi can
only be used for proving L but no other literal. Thus, as a
result, four action rules like a1 : X1 → L1, a2 : X2 → L2,
b1 : L1 → L, and b2 : L2 → L cannot be used to generate
a plan that achieves L given the single disjunction X1 ∨X2.
These are the two sources of incompleteness in the transla-
tion that is aimed at capturing conformant plans that can be
verified easily, by reasoning with ‘one disjunction’ at a time.
Verification that involves reasoning that combines all dis-
junctions is intractable, yet verifications that use a bounded
number of disjunctions N at a time are tractable and could

be accommodated in a polynomial translation scheme as the
one proposed (which may not be effective though for large
N ). We plan to work on such extensions in the future. Also
pending is the treatment of actions with non-deterministic
effects.
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